
Integratie mogelijkheden!
Web Services en Structs
Berry Kuijer Saat
Solution Specialist
27 November 2014

Application integration (EAI)

Example:
Accounting
Asset management
Employee management
Service desk
CRM
Sales

Per connection: at least one call-out and one call- in.

How many connection to be integrated?

“Point to point” connections

1 � 0
2 � 1
3 � 3
4 � 6
5 � 10
6 � 15
….
N �

Web Services

The Model

Web Services

A little recap

SOAP call-out call-back operations
Component

SOAP call-out
driver

External Web
Service Provider

SOAP Request

SOAP Response

parameters
activate

operation SOAP_CALLOUT_PRE
Params
xmlstream SOAP_Request : INOUT
string component : IN
string operation : IN

Endparams
; Your Code here ...

End

operation SOAP_CALLOUT_POST
Params
xmlstream SOAP_Response : INOUT
string component : IN
string operation : IN

Endparams
; Your Code here ...
End

SOAP call-out call-back operations

Call-back operation execution sequence:

[DRIVER_SETTINGS]

USYS$SOP_PARAMS = callback=svc1,svc2,svc3

; overlaid with:

[SERVICES_EXEC]

MYSOAPCPT = $SOP:COMP1 callback=svc1,svc2

Component

SOAP call-in
driver

External Web
Service

Consumer

SOAP Request

SOAP Response

Parameters`

operation myOper
Params
...

Endparams
; My implmentation...

end;

operation SOAP_CALLIN_PRE
Params
xmlstream SOAP_Request : INOUT
string ServVars : IN

Endparams
; Your Code here ...

End

operation SOAP_CALLIN_POST
Params
xmlstream SOAP_Response : INOUT

Endparams
; Your Code here ...

End

SOAP call-in call-back operations

SOAP call-in call-back operations

Call-back operation execution sequence:

[SETTINGS]
$SOAP_CALLIN_CB = svc1, svc2, self, svc3

Where 'self' refers to the current activated instance

Application

Where can we use Struct?

SOAP call-out call-back operations
Component

SOAP call-out
driver

External Web
Service Provider

SOAP Request

SOAP Response

parameters
activate

operation SOAP_CALLOUT_PRE
Params
xmlstream SOAP_Request : INOUT
string component : IN
string operation : IN

Endparams
; Your Code here ...

End

operation SOAP_CALLOUT_POST
Params
xmlstream SOAP_Response : INOUT
string component : IN
string operation : IN

Endparams
; Your Code here ...
End

Component

SOAP call-in
driver

External Web
Service

Consumer

SOAP Request

SOAP Response

Parameters`

operation myOper
Params
...

Endparams
; My implmentation...

end;

operation SOAP_CALLIN_PRE
Params
xmlstream SOAP_Request : INOUT
string ServVars : IN

Endparams
; Your Code here ...

End

operation SOAP_CALLIN_POST
Params
xmlstream SOAP_Response : INOUT

Endparams
; Your Code here ...

End

SOAP call-in call-back operations

Application examples
• Complex parameter support of Web Services

complex parameters are created using Structs and then converted into XML to be passed
as parameter and vice versa. (Struct supports XML schemas and all XML data types)
Or are passed as Struct parameter.

• Transformation of SOAP Headers and Messages
SOAP headers are made available as XML and converted into STRUCT for processing
and/or encryption

• Splitting and merging entities

• Complex data exchange between component instances
the Struct is directly used as a parameter, both for component instances running in the same and in different
processes. Serialization is done automatically and on demand.

• 3-Tier communication
the developer already has a 3-tier application and wants to gradually replace xmlSave and xmlLoad statements
(including all the DTDs and other overhead) with Struct constructions, where the Struct basically takes over the
DTD and mapping administration

• Exchange of JavaScript objects between browser and server
the serialized format of these JavaScript objects is JSON which can be converted into a Struct (on the server) for
further processing. JavaScript objects are typically used in DSPs to exchange field properties and valreps,
parameters and return values of custom JavaScript functions, parameters and return values of JavaScript
functions of third party technology with a JS API (e.g. Google Maps)

• Replacement of expensive list processing –

The Uniface list is a String and therefore inefficient for any type of manipulation; the Struct is an ordered
collection of references to individual data members in memory and therefore very efficient for any type
manipulation

• Complex data exchange between functions/entries/ope rations
the developer already has entries/operations that exchange complex data using lists and he wants to interact with
those. The lists can be converted to Struct for further processing.

Application examples

Structs?

Structs
What it is:

Data type
Complex
Tree-like, hierarchical

Where it is:
In memory
As Variable
As Parameter

Structs

Why
Complex data manipulation
Data transformation
Good performance
Standardization
…..

How
Access operators
Proc functions

Structs, a recap

Structs members
Top (root) node

Zero or more members = subnodes
Struct (nested structs)
Scalar (number, string, date)
Can have a name (doesn’t need to)
Are sequentially ordered (have an index number)

Can be:
Added
Removed
Copied
Moved

Structs and Members

Struct Variables

• …can reference the
same Struct.

• …can reference
multiple Structs.

Structs and Members

Struct Variables

…can reference a
Struct member via
access operators.

Struct Variables

• A change made via one struct variable is reflected in
other struct variables referencing the same Struct.

• A struct variable can reference 0 Structs
($collsize is 0).

• A NULL struct variable is a struct variable with
$collsize=0.

• Proc variables/parameters of type ‘any’ can
reference Structs.

Struct Access Operators
� – dereference operator

o Variable->Name – returns a collection of
references to all Structs named Name

o Variable->* - returns a collection of references
to all members of a Struct

{N} – Struct index operator

o Variable->Name{N} – returns a reference to a
single Struct member from a collection of
references, based on its index position in the
collection

vStruct = Book->Preface->Acknowledgements{2}

…you can extract the value of the second occurrence of the member
with name phone_number, where multiple members have the
same name:

vMobile = vStruct->phone_number{2}

Struct Access Operators

The * wildcard is not the same as using a * in a SQL statement or
a retrieve profile. It can only be used directly after the de-
reference operator. It cannot be used to limit the selection by
preceding it with other characters.

Variable->ab* ----- incorrect

Struct Annotations (Tags)
Descriptive data elements to identify Struct members.

<div class="note">Text can be bold</div>

converted to Struct:
[]

[$tags]

[xmlClass] = document

[div]

[$tags]

[xmlClass] = element

[class] = "note"

[$tags]

[xmlClass] = attribute

"Text can be"

[b] = "bold"

[$tags]

[xmlClass] = element

Some Struct Functions

$name vStruct->$name=“New Name”

$parent vStruct1->$parent=vStruct2

$scalar vStruct1=vStruct2->$scalar

$collSize vNum=vStruct->$collSize

$index vStruct->$index=-1

$memberCount vNum=vStruct->$memberCount

Struct String Representation

$dbgString (include tags)

e.g. putmess vStruct->$dbgString

$dbgStringPlain (exclude tags)

e.g. StringFld=vStruct->$dbgStringPlain

Proc for Manipulating Structs
struct – data type declaration for variables and parameters

$newstruct – create a new empty Struct (vStruct=$newstruct)

$equalStructRefs – check if struct variables reference the same Struct
($equalStructRefs(strVar1, strVar2))

componentToStruct – write Uniface occurrence data from a component
instance to a Struct

structToComponent – convert data from a Struct into respective
entities and occurrences in a component instance

Proc for Manipulating Structs

xmlToStruct – convert any well formed XML document to a Struct

structToXml – convert a Struct to an XML document

jsonToStruct – convert JSON text to a Struct

structToJson – convert a Struct to JSON text

Struct Tags for XML Conversion

• xmlClass
• xmlNamespaceURL
• xmlVersion
• xmlEncoding
• xmlStandAlone
• xmlNamespaceAlias

For a full list of all tags, see the Uniface
documentation or online help.

Component to Struct

component Struct

Struct XML document

Component to Struct to XML

• u_type=“component”
• u_type=“entity”
• u_type=“occurrence”
• u_type=“field”

Component to Struct Uniface tags

• Passed by reference – by default in private
operations, a copy of the reference is made

• Passed by value – by default in public
operations, a copy of the Struct is made

• Defaults can be changed by using the byRef
and byVal qualifiers when declaring the
Struct parameters

Struct as parameter

; Create Struct members:

vStruct->group = $newstruct

vStruct->group->person = $newstruct

vStruct->group->person->firstname = "John"

vStruct->group->person->email = "john@home.com"

;Update the Struct using a different variable

vPerson = vStruct->group->person

vPerson->email = "john.smith@home.com"

; Copy by reference

vStruct1->a = "AAA"

vStruct1->b = "BBB"

;Copy vStruct1 to vStruct2 (by reference)

vStruct2 = vStruct1

;Update the Struct using vStruct2

vStruct2->b = "BBB-updated"

"Although vStruct2 changed the Struct, vStruct1->b
returns the change:"

putmess "%%(vStruct1->b)%%%"

;Copy by value

vStruct1= $newstruct

vStruct2= $newstruct

vStruct1->a = "AAA"

vStruct1->b = "BBB"

;Copy vStruct1 to vStruct2 (by value)

;the left side of the assignment is a Struct member

vStruct2->subnode = vStruct1

;Update the copied struct

vStruct2->subnode->b = "BBB-updated"

;Tags inheritance when copying a Struct:

vStruct1->member1 = "value A"

vStruct1->member1->$tags->someTags = "tag value A"

vStruct1->member2 = "value B“

vStruct1->member2->$tags->someTags = "tag value B“

;Overwrite member2 with a copy of member1;

vStruct1->member2 = vStruct1->member1

;Tags inheritance when assigning a scalar value

vStruct1->member2 = "updated value"

Struct as parameter:

vStructAsIn = $newstruct

call STRUCT_PARAMS_IN_DO(vStructAsIn)

entry STRUCT_PARAMS_IN_DO
params
struct pStruct: IN

endparams

pStruct->aValue = "1111"

end ;

Struct as parameter:

Entry creates a Struct passes it back

call STRUCT_PARAMS_OUT_DO(vStructAsOut)

entry STRUCT_PARAMS_OUT_DO
params
struct pStruct: OUT

endparams

pStruct = $newstruct
pStruct->aValue = "2222"

end

Struct as parameter:

Struct collections:

vStruct1->$name = "Struct1"

vStruct2->$name = "Struct2"

vStruct1->a = "A1"

vStruct1->a{2} = "A2" ; Add a member at position 2

vStruct1->a{-1} = "A3" ; Append new member at end

vStruct1->b = "B“

vStruct1->a->$collsize

vStruct1->*

Struct collections:

i = 1

while (i <= vStruct1->a->$collSize)

putmess "vStruct1->a{%%i%%%} has value
%%(vStruct1->a{i})%%%"

i = i + 1

endwhile

vStruct1->a{1} = "A1 - updated“

Struct collections:

;$parent

vStruct1->a->$parent = vStruct2

;$name

vStruct2->a->$name = "AAA"

Struct collections:

;assign a subnode to each ‘a’ member

vStruct2->*->x = "xyz"

Uniface Struct Workshop

Thanks

Thanks

