
LXScript 
 Scripting with UNIFACE 
 
Gerd Vassen 
 

labsolut ion 
 
Face to Face Uniface User Conference  
Rotterdam, May 2014 



labsolution   

• founded in 2010, Luxemburg 

• 12 employees 

• Uniface VAR 

• software for the medical laboratory 

• standalone modules 

• LX  
Laboratory Information System 
 

 



LIS requirements 

• Software to fully support the process-chain in a medical laboratory  
specimen entry, control and supervision of the measuring process, 
validation rules, reporting, medical and economical analysis, billing 
.... to the point of financial accounting, ERP, inventory management 

• Automating and process optimisation 

• Locally distributed over several sites, international clientele and 
multilingual UI and reporting (renderZ) 

• Hardware environment defined by the customer 

• 50.000 new data records … daily (without counting audit/log data) 

• High requirements for security and system reliability (no downtime) 



LIS interfaces 
• Instrument connections:  different communication formats and 

protocols, only partially ‚standardised‘ (ASTM, HL7, ...) 

• Hospital information systems (HIS) 

• Web order entry and consultation 

• Scanner software (order forms, documents) 

• Specific external software modules (financial accounting, ERP order 
entry, result access, other LIS, monitoring and surveillance 
systems,…) 



Interfaces: technical requirements 

• Low-Level functions (transport) : TCP/IP, serial, file-transfer 
(semaphore, ftp, sftp, ...), complex Web-Services, API, XMLRPC, ... 

• Realtime-control of the communication processes (multithreading) 

• String- and binary data manipulation (checksum, regular expressions, 
extract and transform, de/encoding, de/encrypting…) 

• Automated image processing 

• XML/XSLT/XSD (WebServices, reporting server…) 

• MS Word, Excel (in/out) 

 



The challenge …. 

• Use of a few programming languages that best cover the specific need 

• Smooth mutual integration (call-in/call-out, embed/extend) 

• Platform independency, scalable, performant, safe investment 

 

Database connection (Oracle), Client/Server, UI, Core-Module 

 Uniface 
 

System-task, customer specific requirements, interfaces 

 ?? Inhouse ?  .NET ?  Perl ?  Lua ?  Java ?  Python ?  Ruby ?  TCL ? … 

 



And the winner is ...  

• modern, large community, well documented 

• free, multiplatform (Windows, Linux, Solaris, Mac, …) 

• object oriented, clean syntax, simple, exception handling, UTF-8 

• extendable through self-written or external modules 

• directly deployable (text format), nonetheless performant  

• flexible: from the smallest script to complex projects 

• ideal as embedded scripting language 

Python  



LXScript, first part : basics 

• learn and understand Python 

• first practial experiences on SystemScript-Level (Shell/awk/sed-
replacement) 

• chose an editor (Eclipse, later PyCharm) 

• creation of a framework for faster programming of instrument 
connection drivers (LX ITF) 

• experiment with different integration approaches 
(embedding/extending Python) 

• embed Python via the 3GL Uniface-API Python  LXScript 

 

 



LXScript, first part : basics 

LXScript = extend Python by ufunctions()  (Uniface-functions)  : 

• field access (read, write, $fieldname, ...) 

• occurrences (setocc, remocc, discard, $totocc, ...) 

• message, putmess, askmess, clrmess (switches  optional 
parameters) 

• global registers ($1-$99 + $$applicationSpecific) 

• Activate !      (out1 , out2) = ucall(„Component“, „operation“, in1, in2) 

• Other (macro, $applname, debug, $char, commit, ...) 

Current state: 42 methods for direct interaction with Uniface 



LXScript, first part: basics 

More functions for even better interaction with Uniface 

listFromUniface: uniface list  python list 

dictToUniface: uniface dict  python hash 

toUniface :  transform multidimensional python hashes/lists in Uniface 
dict/list-format (recursively) 

 

 smooth parameter exchange between Uniface and LXScript 

 



LXScript, first part: basics 

Documentation with Sphynx: generate documentation from source code 

 

http://192.168.69.51/doc/html/lxscript/index.html
http://192.168.69.51/doc/html/lxscript/index.html


Uniface 
Component – global procedure 

Uniface 
component  2 

activate comp2.op(p1) 

activate comp2.op(p1) 

Uniface 
component 1 

Uniface 
global proc 

call GLOBALPROC(params) 

Access to 

comp1 Daten 



Interaction Uniface - LXScript 

Uniface 
component  2 

activate comp2.op(p1) 

uact(„comp2“, „op“, p1) 

Uniface 
component 1 

LXScript 
Context:Script1 

call LXS(„Context:Script1“, par) 

Access to 

comp1 Daten 



A first example …. 

 

read from and write to fields: uget, uset 

occurrence manipulation: 
positioning, add, delete: usetocc, ucreocc, udiscocc 

user-interaction message/question: umsg, uaskmess 

component call:  uactf, umacro 

 



Integration von LXScript in LX 

• LX Uniface-Part deployment per uar   full version control, for source 
code and runtime archives (dtap) 

• LXScripts as part of the core-application and are deployed the same 
way, as files 

• LXScripts may be customer specific.   They are saved in a database 
table LXScript (similar to other customer data) 

• LXScript can call another LXScript  allows to easily vary a standard 
behaviour, core LXScript  customer LXScript 

• Deployment: unit-tests are fully supported LXScript  

• Customer can embed his own modules: sales argument! 

 



The door is opened 

Uniface 

LXScript 

…  without Uniface-extensions ! 

Networking 

Web Server 

String/Bytes 

MS Office 
XML 

OS 
HTML 

Image manipulation 

and a lot more... wrapper 
external DLL 

wrapper 



Objectoriented programming with LXScript 

• A script can define a class, with proper functions and variables 

• An optional context LXContext provides a default-implementation for 
the class 

• LXScript is the inheritance of the LXContext class with full OO-support 

• The context also provides documentation and basis-template, which 
simplifies creation of new LXScripts 

• An LXScript is defined by „context:name“ and called the same way 

LXScript, second part : 
 

from script to object (OO) 



LXScript, Phase 3 : 
 

Optimizing the framework integration 

Meanwhile the labsolution Uniface-team was not sleeping ... 

The LX-framework was enriched by a service-component (per Uniface-
Template).   This _SVC component provides for every entity operations 
to easily access single or multiple data records of that entity (CRUD).  

In the LX-framework all indirect data access passes through those _SVC 
components 

The basic service template has been improved and extended over time 
(recursive search, SQL-Query integration for best performance, new 
functions, ...) 

 



LXScript, Phase 3 : 
 

Optimizing the framework integration 

How to access those SVC service components in LXScript ? 

 new usvc... -wrapper-functions, single line easiest function calls as 
LXScript counterparts 
 

Instead of uact ‚ENTITY_SVC‘.operation()  just a simple usvc ... 

single occ: getrec, crerec, crurec, updrec, delrec ..., getrecfmt, ... 

multiple occ: getreclist, crereclist ... getreclistfmt ... 

misc: getlabels, getkeyfields, getreccnt ... 



LXScript, Phase 4 : 
 

JavaScript - Interface 

 

LXScript/JavaScript bridge in the webserver 

Functions available in LXScript are made available to the WebServer  ! 

 

 LX Cockpit 

Monitor and control communication processes 
 



LXScript, Phase 5 : 
 

LS Data provider (ORM) 

We have a OO –language, we want to benefit from that fact and 
address data structures in an object-like way 

Introduce delayed loading in LXScript: 

Data structures are filled when they are accessed and only if they are 
accessed !! 

 Delayed loading + data model documentation + service wrapper 
 (+ extension methods)  

 new LXScript module ‚LS data provider‘ 

 ORM  object relational mapping of the LX-Database ! 



LXScript, Phase 5 : 
 

LS data provider (ORM) 

How does the LX data provider work ? 

LXScript combines  

1. Delayed loading (extension load-on-demand) 

2. Data model extraced from the Oracle-Data-Modeler (XML analyser) 

3. SVC service wrapper (data access via Uniface), Uniface programmed 
business-logic  

  Data navigation in LXScript via object model 



LXScript 

  
 
Gerd Vassen 
 

labsolut ion 
 
Face to Face Uniface user meet ing Rotterdam 15.05.14  

extending Uniface by embedding an extendable language 


