
Face2Face – May 15th 2014

Menu

• About me

• Conclusions

• Game time

• A short story

• uArchitect

• Material ICT Solutions

About me

• Dennis Vorst

• Uniface consultant @ Material ICT Solutions

• Working with Uniface since 1997

• Previously worked for Achilles and ITIS

• Runner up @ Uniface Challenge 2012

Keep in mind

• That you are free to ask questions during the
presentation

• That when Compuware is mentioned I really,
really meant to say Uniface

• The demo is of a product under development.
Some inconsistencies may occur

• If I am going too fast let me know

Conclusion: Wrong

• When you are using it wrong you may have to
suffer the consequence

Start using it as a proper 4GL.

Conclusion: Productivity

• Shrink the haystack, enlarge the needle

The reason you are using Google

Conclusion: Quality Control

• Is important

Quality is in the eye of the beholder

Nudge, nudge, wink, wink

Game time

Question: 1

entry FOO

 if ($CONTROLE$ = 10)

 if (FIELD.SOME_ENTITY = 3)

 $CONTR_RETURN$ = "J "

 else

 $CONTR_RETURN$ = "N"

 endif

 return(0)

 endif

end

Question: 2

entry FOO

 retrieve

 if (A.SOME_ENTITY > 100)

 B.OTHER_ENTITY = 0

 endif

 return (0)

end

Question: 3

entry FOO

 $55 = 1

 ANCHOR:

 if ($55 != 9)

 $55 += 1

 goto ANCHOR

 endif

 return (0)

end

You want me to put what where?

Location

Model One entity and one field

one entity more fields

Library No entities and no fields

Component Two or more entities

Why

• Using the product the way it was intended
helps you get the most out of it.

The First Hello World

Hello World

Hello Paradise

Hello Big Bang

message “Hello %%$1%%%”

Hello Adam

Hello Eve

message $concat(“Hello “, v_nmperson)

Evolutionary overhead

Why

• We all make mistakes.

Your Application

• Over ten years old

– Started in a previous version of Uniface

• 500K+ lines of code

• Original creators have left the company

• An army of consultants worked on it

• No time (or money) for refactoring

• If it ain’t broke…

What even may apply

• Access to library and model are restricted

– Only architect

• Components are copied

– Introducing lots of duplicate elements

• Database model uses shorthand codes

• Coding is outdated (Run vs activate)

• No Quality control

Your situation

• Prevent even more
potential harmful
code to enter

• Start refactoring

Why uArchitect

• Automated reviews

• Recognizing duplicates

• Improving quality of your codebase

• Alterior motives

– Educate developers by providing feedback

– Saving time reviewing manually

uArchitect concepts

• Uniface 9

• XML and XSLT

• CSS

• Customizable layout

• Only additional requirement webbrowser

• Only available on supported Uniface
versions

Demo

• Three parts

– Show configuration options

– Run full analysis (about 3 minutes)

– Show result

analysis

• To types of analysis

– Single object (model, library or component)

– Full application (time consuming)

• Three levels

– Application model

– Library

– Component

General Code Analysis

• Entries

• Operations

• Local parameters

• Local variables

• Error handling

• Deprecated code

• Return(0) in entry and operation

Application model

• Total number of entities

• Entities painted on a component

• Total number of fields

• Naming convention of entities and fields

• Casing of entities and fields in code

• Fully Qualified fieldnames

Libraries

• Naming convention of

– libraries

– labels

– include procs

– global procs

• Duplicate labels

• Recognition of supported languages

• Usage of labels and procs (full scan only)

Components

• Relationship of entities painted within each
other

• Maximum number of entities

• Usage of entries defined in component

• Language independant labels on form

• Use of component variables

Features we are working on

• Duplicates

– Default is now exact match

• Javadoc like features

– For easy retrieval of reusable elements

• Betatesting the analysis of model and library

Duplicates – Exact Matches

forlist v_item in p_list_in

 v_item=$rtrim(v_item,p_trimvalue)

 v_item=$ltrim(v_item,p_trimvalue)

 if (v_item != "")

 putitem p_list_out, -1, v_item

 endif

endfor

forlist v_item in p_list_in

 v_item=$rtrim(v_item,p_trimvalue)

 v_item=$ltrim(v_item,p_trimvalue)

 if (v_item != "")

 putitem p_list_out, -1, v_item

 endif

endfor

Duplicates – Larger code

forlist v_item in p_list_in

 v_item=$rtrim(v_item,p_trimvalue)

 v_item=$ltrim(v_item,p_trimvalue)

 if (v_item != "")

 putitem p_list_out, -1, v_item

 endif

endfor

call some_function(some_variable)

If ($status < 0) return $status

forlist v_item in p_list_in

 v_item=$rtrim(v_item,p_trimvalue)

 v_item=$ltrim(v_item,p_trimvalue)

 if (v_item != "")

 putitem p_list_out, -1, v_item

 endif

endfor

return(0)

Duplicates – Fragments

forlist v_item in p_list_in

 if (v_item != "")

 putitem p_list_out, -1, v_item

 endif

endfor

forlist v_item in p_list_in

 v_item=$rtrim(v_item,p_trimvalue)

 v_item=$ltrim(v_item,p_trimvalue)

 if (v_item != "")

 putitem p_list_out, -1, v_item

 endif

endfor

IRL

Not Used Duplicate

Entities 29%

Component
variables

14%

Operations 25%

Entries 3% 25%

Parameters 4%

Local variables 12%

Lowest percentage measured in three different Uniface applications

Refactor for Free

Recap

• uArchitect analyses your work

• Based on your standards and guidelines

• It analyses on three levels

– Models

– Libraries

– Components

• Scan of an entire application is possible

– But may be time consuming

uArchitect

• Is written in Uniface 9

• And uses XML, XSLT and CSS

• You just need a browser

• Nothing else

Why you need it

• Fast and high quality review

• Based on your standards (Customizable)

• Repeatable

• Higher quality of code

• Developer check their own work

• Early detection of issues

About Material

• www.materialictsolutions.nl

• @materialict

• www.github.com/materialict

• Ask Jan Lex about

– Smart Sourcing

– Consultancy

– On site demonstration

Questions

