
Uniface User Conference
Face2faceFace2face

Enhancing Uniface Web services

Berry Kuijer Saat

May 23, 2012

Agenda

• Transformation
• The Struct
• Applying Struct
• SOAP complex parameter support
• SOAP Header support• SOAP Header support
• SOAP Fault support

Challenge
With the various formats used for Web

Services we needed a solution that
allowed us to interface with and
transform to and from the objects and
constructs used within Uniface.constructs used within Uniface.

Plus it had to be fast and extensible

Challenges of formats
Entity

� � � � �

List � � � � �

XML � � � � �

HTML
� � � � �

HTML
� � � � �

JSON
� � � � �

… � � � � �

Entity List XML HTML JSON …

Transformation Challenges
Naming conflicts

Name casing (Upper/lowercase)

Duplicate Names

Data Type conflicts

Entity/Occ/Field/Properties v.s. Element/AttributesEntity/Occ/Field/Properties v.s. Element/Attributes

Nesting (complex-types)

Data Type incompatibilities (boolean T/F 1/0 Y/N)

Huge Issue: Transformation can result in information loss!!!

Transformation solutions
Declarative
e.g. XSLT

Source
data

Target
data

Transition
definition

Procedural

Source
data

Target
data

Transform code
Transform code
Transform code

….
Transform code

Our Solution

• New Struct data type

• New proc translation instructions• New proc translation instructions

What is Struct – conceptual
Procedural solution to resolve complex data transformation

Source
data

Target
data

Regular translation

Source
data

Target
data

Transform Struct
Transform Struct
Transform Struct

….
Transform Struct

Convert into Struct Convert from Struct

Retains origin attributes

What is Struct – technical
• New data type in Proc language: struct

• A struct variable is a reference (handle) to a Structure

• A Structure is a collection of members in memory that
are hierarchical organized

• A Structure is created once it is referenced

• A Structure is deleted once it references count is zero

• A Structure has no specification

• A struct variable has no specification

variables
struct uOrder

endvariables
putmess uOrder-> $dbgString

[MYORDERFORM]
[ORDER.SALES]

[occ]
[ORDER_ID] = "21EC2020"
[DATE] = 20110801
[STATUS] = 2
[SHIP_TO] = "My house"
[ORDERLINE.SALES]

[occ]
[LINE_ID] = "213A3AAB"
[ITEM_NAME] = "Les Paul"
[UNIT_PRICE] = 1200
[QUANTITY] = 1• A Structure is created dynamically (at runtime)

• A member of a Structure is either a node or a leave

• Every member can be directly addressed

• Every member can be created, moved, copied, deleted,
renamed using Proc

• Leaves have a value that can be read and set using
Proc

[QUANTITY] = 1
[LINE_TOTAL] = 1200

[occ]
[LINE_ID] = "1234FFFF"
[ITEM_NAME] = "PHB Slater"
[UNIT_PRICE] = 3225
[QUANTITY] = 2
[LINE_TOTAL] = 6450

[TOTAL] = 7650

quantity = uOrder->MYORDERFORM->ORDER.SALES->occ{1}->ORDERLINE.SALES->occ{2}->QUANTITY
; quantity = 2

What is Struct – technical
• A Structure can be inspected e.g. in the debugger

• A Structure can take any hierarchical format

• A component structure can be converted into a
Structure and vice verse

• An XML stream can be converted into a Structure and
vice verse

• When created by conversion, a member maintains
information about what it originally was (member type +
value type)value type)

• This information can be get and set

<aaa>
abc

</aaa>

[aaa] = "abc"
[$tags]

[xmlClass] = "element"
[xmlTypeCategory] = "simple"
[xmlDataType] = "string"
[xmlTypeNamespace] = "http://www.w3.org/2001/XMLSch ema"

[ORDER.SALES]
[$tags]

[u_type] = "entity "

Supportive Proc Instructions
XMLTOSTRUCT

STRUCTTOXML

STRUCTTOCOMPONENT

COMPONENTTOSTRUCTCOMPONENTTOSTRUCT

FOR - NEXT

New Struct Functions
$newstruct - Creates a struct member

$collSize - Get the number of Structs in the collection

$dbgString - Get a string that represents the Struct collection.

$index - Get or set the index of the Struct collection.

$isLeaf - Check whether a Struct is a Struct leaf

$isScalar - Check whether a Struct is a scalar Struct.

$istags - Check whether the Struct is a $tags Struct for another$istags - Check whether the Struct is a $tags Struct for another
Struct

$memberCount - Get the number of members in a Struct.

$name - Get the name of a Struct

$parent - Get or set the parent of the Struct.

$tags - Get or set annotations for a Struct.

Use a Struct in Proc
[MYORDERFORM]

[ORDER]
[OCC]

[ORDER_ID] = 1
[DATE] = 20110812
[SHIP_TO] = "Gerton"

[OCC]
[ORDER_ID] = 2
[DATE] = 20110813
[SHIP_TO] = "Kees"

variables
struct uOrder

endvariables
uOrder->ORDER->OCC{2}->$index = 1
OUTPUT = uOrder->$dbgstring

end

Move members within its collection

[MYORDERFORM]
[ORDER]

[OCC]
[ORDER_ID] = 2
[DATE] = 20110813
[SHIP_TO] = "Kees"

[OCC]
[ORDER_ID] = 1
[DATE] = 20110812
[SHIP_TO] = "Gerton"

Use a Struct in Proc
variables

struct uOrder
endvariables

uOrder->$name = "<$componentname>"
uOrder->ORDER = $newstruct
uOrder->ORDER->OCC = $newstruct
uOrder->ORDER->OCC->ORDER_ID = 1
uOrder->ORDER->OCC-> DATE = $date
uOrder->ORDER->OCC->SHIP_TO = "Gerton"
putmess uOrder->$dbgstring
structtocomponent uOrder

[MYORDERFORM]
[ORDER]

[OCC]
[ORDER_ID] = 1
[DATE] = 20110812
[SHIP_TO] = "Gerton"

Conversion to component

structtocomponent uOrder
end

[ORDERFORM]
[$tags]

[u_type] = "component"
[ORDER.SALES]

[$tags]
[u_type] = "entity"

[OCC]
[$tags]

[u_type] = "occurrence"
[ORDER_ID] = "1"

[$tags]
[u_type] = "field"

Use a Struct in Proc
Conversion from component and meta tags

variables
struct uOrder

Endvariables

retrieve

componenttostruct uOrder

putmess uOrder->$dbgstring

end

[u_type] = "field"
[DATE] = "20110105"

[$tags]
[u_type] = "field"

[STATUS] = "02"
[$tags]

[u_type] = "field"
[SHIP_TO] = "Gerton"

[$tags]
[u_type] = "field"

[TOTAL]
...

<?xml version="1.0"?>

<Order>

<OrderLine
id="21EC2020">

Gibson Les Paul

</OrderLine>

<OrderLine>

PHB Slater I

[]
[$tags]

[xmlVersion] = 1.0
[Order]

[$tags]
[xmlClass] = element

[OrderLine]
[$tags]

[xmlClass] = element
[id] = 21EC2020

[$tags]

Use a Struct in Proc
Conversion from XML and meta tags

PHB Slater I

</OrderLine>

</Order>

[$tags]
[xmlClass] = attribute

[] = Gibson Les Paul
[OrderLine] = PHB Slater I

[$tags]
[xmlClass] = element

variables
struct uOrder

endvariables
xmltostruct uOrder, xml
putmess uOrder->$dbgstring

end

Application

Where can we use Struct?

Application examples 9.5
• Complex parameter support of Web Services

complex parameters are created using Structs and then converted into XML to be passed
as parameter and vice versa.
(Struct supports XML schemas and all XML data types)

• Transformation of SOAP Headers and Messages
SOAP headers are made available as XML and converted into STRUCT for processing
and/or encryption

• Splitting and merging entities

Application in the future
• Complex data exchange between 4GL component instanc es

the Struct is directly used as a parameter, both for component instances running in the same and in different
processes. Serialization is done automatically and on demand.

• 3-Tier communication
the 4GL developer already has a 3-tier application and wants to gradually replace xmlSave and xmlLoad
statements (including all the DTDs and other overhead) with Struct constructions, where the Struct basically
takes over the DTD and mapping administration

• Exchange of JavaScript objects between browser and server
the serialized format of these JavaScript objects is JSON which can be converted into a Struct (on the server) for
further processing. JavaScript objects are typically used in DSPs to exchange field properties and valreps,
parameters and return values of custom JavaScript functions, parameters and return values of JavaScript parameters and return values of custom JavaScript functions, parameters and return values of JavaScript
functions of third party technology with a JS API (e.g. Google Maps)

• Replacement of expensive list processing –

The Uniface list is a String and therefore inefficient for any type of manipulation; the Struct is an ordered
collection of references to individual data members in memory and therefore very efficient for any type
manipulation

• Complex data exchange between functions/entries/ope rations
the 4GL developer already has entries/operations that exchange complex data using lists and he wants to
interact with those. The lists can be converted to Struct for further processing.

SOAP Support

SOAP Call-out

SOAP Header

SOAP FaultSOAP Fault

SOAP call-out

• No changes in the SOAP implementation of 9.5

• Complex parameters are mapped to String (raw
XML)

Component

SOAP call-out
(activate)

External Web

SOAP Request
Component

Structure To STRUCT Transform To XML

IN (1-level)

IN (complex)

Field or variable

Entity or Occurrence

IN (basic)

SOAP call-out

External Web
Service Provider

SOAP Response

Structure

To Entity Transform To STRUCT

OUT (1-level)

OUT (basic)

Component
Structure

Field or variable

Entity or Occurrence

OUT (complex)

entry getDetails
params

string pOrderId : IN
endparams
variables

struct uOrder, uConfirmation
xmlstream xOrder, xConfirmation

endvariables
; Get data
ORDER_ID.ORDER/init = pOrderId
retrieve "ORDER"
if ($status < 0) return -1

; Transform data
componentToStruct /one uOrder, "ORDER.SALES" ; convert to STRUCT
uOrder->ORDER->$name = "Order" ; rename entity
uOrder->*->SHIP_TO->$name = "ShipTo" ; rename field
uOrder->*->ORDER_ID->$tags->xmlClass = “attribute” ; force to XML attribute iso. Element
uOrder->ORDER->ORDER_ID->$name = "id" ; rename field
structToXml /schema uOrder, xOrder, "order.xsd“ ; convert to XML

; Activate (SOAP call - out)
activate " SHOP_SERVICE".putOrder (xOrder , xConfirmation) ; IN - XML OUT- XML
; Activate (SOAP call - out)
activate " SHOP_SERVICE".putOrder (xOrder , xConfirmation) ; IN - XML OUT- XML
selectcase $procerror
case "SOAP Fault returned"

...
case ...

...
endselectcase

; Transform data
xmlToStruct/schema uConfirmation, xConfirmation, "confirmation.xsd“
if (uConfirmation->Status = "OK") uConfirmation->Status = "1"

; Set data
STATUS.ORDER = uConfirmation->Status
store /e "ORDER"
commit

end

SOAP call-in
Component

SOAP call-in

External Web

SOAP Request Component
StructureTo STRUCT Transform To Entity

IN (1-level)

IN (complex)

Field or variable

Entity or
Occurrence

IN (basic)

External Web
Service Consumer

SOAP Response

To XML Transform To STRUCT

OUT (1-level)

OUT (basic)

Component
Structure

Field or variable

Entity or
Occurrence

OUT (complex)

operation order
params

xmlstream xOrder : IN ; some XML schema
xmlstream xConfirmation : OUT ; some XML schema

endparams
variables

struct uOrder, uConfirmation
endvariables

; transform data
xmltostruct uOrder, xOrder
uOrder->$name = "ORDER.SALES"
if (uOrder->ShipTo != uOrder->BillTo)

; Unsupported -> return SOAP Fault
return -1

endif
; ...
structtocomponent uOrded
; Process...
ORDER_ID = $uuidORDER_ID = $uuid
store
commit
; generate result
if ($status = 0)

uConfirmation->OrderStatus = "ordered"
uConfirmation->OrderId = ORDER_ID.ORDER.SALES

else
uConfirmation->OrderStatus = "failed"
; ...

endif
structtoxml xConfirmation, uConfirmation
return 0

end

SOAP Header support
<?xml version="1.0"?>
<soap:Envelope
xmlns:soap="http://www.w3.org/2001/12/soap-
envelope"">

<soap:Header>
<transaction

soap:mustUnderstand="1“>234</transaction>
</soap:Header>
<soap:Body>

<OrderForm>
<Order id="21EC2020">

<Date>20110801</date>
<Status>2</status><Status>2</status>
<Total>7650</Total>
<ShipTo>

My house
Dreef 60
Amsterdam

</ShipTo>
<OrderLine id="1234FFFF ">

<Item> PHB Slater I </item>
<UnitPrice>3225</UnitPrice>
<Quantity>2</Quantity>
<Total>6450</Total>

</OrderLine>
</Order>

</OrderForm>
</soap:Body>

</soap:Envelope>

SOAP call-out call-back operations
Component

SOAP Request

operation SOAP_CALLOUT_PRE
Params

xmlstream SOAP_Request : INOUT
string component : IN
string operation : IN

Endparams
; Your Code here ...

End

SOAP call-out
driver

External Web
Service Provider

SOAP Request

SOAP Response

parameters
activate

operation SOAP_CALLOUT_POST
Params

xmlstream SOAP_Response : INOUT
string component : IN
string operation : IN

Endparams
; Your Code here ...

End

SOAP call-out call-back operations

Call-back operation execution sequence:

[DRIVER_SETTINGS]

USYS$SOP_PARAMS = callback=svc1,svc2,svc3

; overlaid with:; overlaid with:

[SERVICES_EXEC]

MYSOAPCPT = $SOP:COMP1 callback=svc1,svc2

Component

SOAP call-in
driver

External Web
Service

Consumer

SOAP Request

SOAP Response

Parameters`

operation myOper
Params

...
Endparams

; My implmentation...
end;

operation SOAP_CALLIN_PRE
Params

xmlstream SOAP_Request : INOUT
string ServVars : IN

Endparams
; Your Code here ...

End

SOAP call-out call-back operations

operation SOAP_CALLIN_POST
Params

xmlstream SOAP_Response : INOUT
Endparams

; Your Code here ...
End

SOAP call-in call-back operations

Call-back operation execution sequence:

[SETTINGS]

$SOAP_CALLIN_CB = svc1, svc2, self, $SOAP_CALLIN_CB = svc1, svc2, self,
svc3

Where 'self' refers to the current activated
instance

SOAP Fault support
<?xml version="1.0"?>
<soap:Envelope
xmlns:soap="http://www.w3.org/2001/12/soap-
envelope"">

<soap:Header>

<transaction
soap:mustUnderstand="1“>234</transaction>

</soap:Header>
<soap:Body>

<soap:Fault>
<faultcode>SOAP-ENV:Server</faultcode>
<faultstring>Server Error</faultstring>
<detail><detail>

<myfaultdetails>
<message>

My application didn't work
</message>
<errorcode>

1001
</errorcode>

<myfaultdetails>
</detail>

</soap:Fault>
</soap:Body>

</soap:Envelope>

SOAP Fault support
• SOAP Fault automatically returned by

SOAP call-in driver for any technical
reasons

• Custom SOAP Faults can be returned
using Struct and SOAP Call-back triggersusing Struct and SOAP Call-back triggers
(Use Proc to replace the SOAP Response with a SOAP Fault)

• Received SOAP Faults by SOAP call-out
driver are available to Proc via
$procerrorcontext

THANKS & QUESTIONS

